Low Effort Control for Chaotic Systems via a Fuzzy Model-based Approach
نویسندگان
چکیده
Abstract: In this paper,we propose a low effort control scheme for chaotic systems by using fuzzy model-based design method. First, we represent nonlinear systems into T-S fuzzy models in a working region covering the point to be regulated. The stability condition of the overall system is formulated into (LMIs). To guarantee the stability, the region of attraction is also investigated. According to topologically transitive property for chaotic systems, the feedback control force is activated only when the trajectory passes through the neighboring region of the regulated point. Compared to purely fuzzy model-based controller, the control force for the fuzzy chaos hybrid controller is extremely low. Copyright c ©2005 IFAC
منابع مشابه
Stabilization of chaotic systems via fuzzy time-delayed controller approac
In this paper, we investigate the stabilization of unstable periodic orbits of continuous time chaotic systems usingfuzzy time-delayed controllers. For this aim, we present a control method that can achieve stabilization of an unstableperiodic orbit (UPO) without any knowledge of the system model. Our proposal is attained progressively. First, wecombine the input-to-state linearizing controller...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملDesign of A No-chatter Fractional Sliding Mode Control Approach for Stabilization of Non-Integer Chaotic Systems
A nonlinear chattering-free sliding mode control method is designed to stabilize fractional chaotic systems with model uncertainties and external disturbances. The main feature of this controller is rapid convergence to equilibrium point, minimize chattering and resistance against uncertainties. The frequency distributed model is used to prove the stability of the controlled system based on dir...
متن کاملFUZZY OBSERVER DESIGN WITH n-SHIFT MULTIPLE KEY FOR CRYPTOGRAPHY BASED ON 3D HYPERCHAOTIC OSCILLATOR
A fuzzy observer based scheme for synchronizing two hyperchaoticoscillators via a scalar transmitted signal for cryptographic application isproposed. The Takagi-Sugeno fuzzy model exactly represents chaotic systems.Based on the general fuzzy model, the fuzzy observer of a chaotic system isdesigned on the basis of the n-shift multiple state based key encryption algorithm.The scalar transmitted s...
متن کامل